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It seems that no treatment of pulsating flow in deformable tubes is complete without 
a reference to the work of Womersley (1955) which for an infinitely long tube deals 
with the waves of axisymmetric transverse motion and of longitudinal motion of the 
walls. This theory has so far been subjected to experimental test only for tethered 
tubes in which longitudinal wall motion is absent. 

A series of measurements of the longitudinal motion has been made on horizontal 
water-filled latex tubes suspended by an array of strings so that there is minimal 
longitudinal constraint except at the ends, which are fixed. One end of the tube is 
driven by oscillating flow produced by a piston; the other end is closed. Theory and 
experiment agree when the tube is long provided an entrance length greater than a 
wavelength is included. Tubes which are short enough for reflection from the closed 
end to be significant present a more complicated problem. It is found that in the 
entrance length the theory of Womersley cannot be applied. A more refined theory 
is required which takes into account a distributed end constraint more completely 
than as a simple boundary condition. 

Experiments on tethered tubes in which longitudinal wall motion is absent are also 
presented. These serve to demonstrate that the theory for such tubes agrees with 
measurements without any appreciable end effect and also shows that the small 
viscoelasticity of the latex rubber is correctly included. 

1. Introduction 
Womersley’s (1955) theory of the waves accompanying pulsatile flow in deformable 

tubes is a much quoted reference in the literature of blood flow in arteries. It has been 
cited 55 times in the last 15 years at a rate which has not been diminishing. 
Womersley ’s theory concerns the wall motions in thin-walled infinitely long elastic 
tubes filled with incompressible fluid. The theory shows that there are two waves ; 
a pulse wave in which the wall motions are principally radial and a second wave in 
which the wall motion is principally longitudinal. We shall call these waves I and 
I1 respectively. Womersley predicts the propagation constants yI and yII of these two 
waves in the practical case in which the wavelength is long compared with the tube 
diameter. In an elastic tube the propagation constants are functions of the non- 
dimensional frequency only. This non-dimensional frequency, which Womersley 
called a, is also known as the Stokes number and is equal to R(n/v)t where R is the 
internal radius of the tube, n the angular frequency and v the kinematic viscosity 
of the fluid in the tube. 

Womersley’s theory and its results are to be found in all the recent texts on blood 
flow and related subjects; we may cite McDonald (1974), Talbot & Gessner (1973), 
Noordergraaf (1978) and Pedley (1980). In view of the simplicity of the measurements 
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which we shall describe it is surprising that the Womersley theory has not been 
experimentally investigated in its full form during the quarter century since it was 
published. There have been many theoretical treatments of the subject of waves in 
deformable tubes. These have considered refinements of the theory by the inclusion 
of factors such as thick walls, non-isotropic wall materials and viscoelastic effects, 
but without any essential change in the basic results. Cox (1969) compares various 
linear theoretical models. Rubinow & Keller (1978) extended the theory beyond the 
long-wavelength assumption of Womersley. 

This paper addresses the basic physical problem of the wave motions in a latex 
rubber tube driven by an oscillating flow produced by a piston and the application 
of Womersley’s theory to these. There are obvious applications to the theory of blood 
flow in arteries which will be referred to; the treatment of Womersley was written 
with medical applications in view. There are however great differences between 
arteries and latex tubes, such as the dependence of the elastic moduli on the applied 
stresses and their much greater viscoelasticity. 

In the late 1960’s there was concern that the longitudinal motion of arteries was 
much less than that predicted by Womersley. Atabek & Lew (1966) included the 
effects of initial stresses in the theory. There are large initial stresses in arteries but 
in the experiments that we shall describe they are small and their effect almost 
negligible. Mirsky (1967) showed that the longitudinal motion was reduced when the 
wall was elastically orthotropic (when Elong. = jEcirc. where Elong. and Ecirc. are the 
elastic moduli in the longitudinal and circumferential directions, the amplitude of 
longitudinal motion of the tube was reduced by 30 yo in the aorta). In our experiments 
isotropic latex rubber tubes were used. Atabek (1968) showed that his analytical 
results for a thin-walled tube were only 3 yo different from Mirsky’s thick-wall analysis 
for the case where thickness/radius was 0.15; for our tube this ratio is 0.58 and 
account is taken of this by a correction factor. 

Interest in this aspect of the subject waned, presumably because it was considered 
that in medical applications the relevant wave is the pulse wave in a tube which is 
tethered so that longitudinal motion is inhibited. In 1977 however van Loon, Klip 
& Bradley showed that, for arteries at in-vivo tension and length, the length and 
longitudinal force do not change when the pressure in the tube fluctuates. Large 
tethering forces are thus not necessary for the absence of longitudinal oscillations. 
This was found to be the case for large and small vessels and they suggested that 
this behaviour is a result of the structure of the vessels. Kuiken has recently (1984) 
shown that when the prestresses are included correctly in the wall equations the 
absence of longitudinal motion in arteries can be attributed directly to the large 
prestresses rather than to the tethering. Kuiken’s publication also contains an 
analysis of a semi-infinite tube and the results which he presents indicate an end effect 
which extends over a large number of radii of the tube. This work could be eminently 
applicable to the present results. Calculations on the basis of this theory have not 
been applied to our configuration but further comment is made in $5.4. 

Our interest in the subject arose from the observation that in a short section of 
a long rubber tube, which was unsupported except at the ends and not under tension, 
one could see the radial motion of the tube (of amplitude, say, 5 yo of the diameter) 
whilst longitudinal motion was invisible. Womersley’s theory predicts that the 
amplitude of the longitudinal motion should be considerably greater than that of the 
radial motion. Measurements of longitudinal and circumferential strains showed that 
the former was only about 1 % of the latter for a particular short segment whereas 
Womersley’s theory predicts about 50 oL, at high a. The simple conclusion was that 
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tethering at  points, at the ends of the segment, which are separated by very much 
less than a wavelength of the pulse wave effectively tethers the tube completely. The 
reason for this is that for nearly all of the time the whole segment is trying to expand 
or contract as a whole. 

Measurements have been made on water-filled latex rubber tubes which were 
chosen because of their small viscoelasticity. The viscoelastic damping strongly 
affects the wave propagation and it is necessary even for latex to measure and include 
the viscoelasticity. That this is done correctly is tested by consideration of propagation 
in tethered tubes with no longitudinal motion. The latex tubes are shown to be 
elastically isotropic and it is assumed that the viscoelasticity is isotropic also. 

Womersley’s theory has not been tested experimentally partly because the theory 
concerns a tube of infinite length which is somewhat unrealistic. The tube has to have 
ends which produce a longitudinal (and radial) constraint. Away from the ends the 
constraints can be minimized and so a direct test of Womersley’s theory is possible. 
We shall see that close to the end of the tube Womersleg’s theory must be replaced 
by one which includes the dominant end constraint but that far from the ends the 
direct application of Womersley’s theory agrees with the measured values of 
longitudinal motion. 

2. Womersley’s theory 
Since this paper concerns an experimental investigation of the results of Womersley ’s 

theory i t  is appropriate to outline his derivation (1955) and to include relations from 
the theory which we will need later but which are not given explicitly in Womersley’s 
paper. His notation is adopted with the exception of the symbols used for the wall 
and fluid densities. The propagation constant is introduced as well as Womersley’s 
complex wave speed. 

The variables of the tube and the motion are shown in figure 1. The thin-walled 
elastic tube of density pw is filled with incompressible fluid of density p. The fluid 
is subjected to a pressure gradient apP/az. Womersley considers an infinite tube in 
which wave solutions are sought which have the form 

q = q1 exp in t - -  = q1 exp (int-yz), (1) ( *  ( 3) 
where q = p, u, w, 6 or [, which are defined on figure 1, n is the angular frequency, 
t the time and c the complex wave speed. 

in in 
y = c = yr+iyi = yr+;, 

where yr and yi are the real and imaginary parts of y and w is the real wave speed. 
Assuming p to be a given real quantity the other ql’s are complex because they have 
a phase different from that of p. Womersley’s solutions are in terms of quantities 
which he calls c, c,, and x, where ” 

c,, is the Moens-Korteweg speed = (3) 

where E is Young’s modulus. Table 1 gives expressions in terms of x, the quantity 
which Womersley chooses to use, 

2 c; - -2 y2c; x=----- 
1 - u 2 c 2  l-u2 n2 ’ 

where u is Poisson’s ratio. 
(4) 
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Velocity Displacement 
Position 

FIGURE 1.  The variables of the tube and motion. 

In Womersley’s variables For Poisson’s ratio = 0.5 In terms of y 

2a- 1 + 2 / x  
Flo - 2~ ~1I(P1IPCP) = 3 = 

Pl 
PC 

m1 = - ( 1  + 3Fl0) 

For a tethered tube (C = 0) 

8, is the amplitude of the cross-sectional mean speed of the fluid; p is the fluid density which 

Fl, = 2J , (z ) / (do(z ) )  where z = aii, J1 and Jo are Bessel functions of the first kind of order 1 and 0. 
Womersley calls po. 

TABLE 1. Expression for variables in terms of pressure amplitude p ,  

The linearized equations of fluid motion are reduced to expressions for w1 and u1 
in terms ofp, and a constant C, which is later eliminated. The radial and longitudinal 
equations of motion of the thin wall are 

and 

where k = pw h l p R .  
Matching the fluid and wall equations at y = 1 gives four equations in CJp, ,  [ , /p , ,  

&/p ,  and c (or 2 or y ) .  The simpler case of zero longitudinal motion of the wall is 
simply obtained at this stage by inserting [, = 0 in these equations; this case was 
formulated and discussed by Witzig (1914). Solution of the equations results in the 
expressions given in table 1 together with values for the wave speed and attenuation 
corresponding to two different values of the propagation constant or complex wave 
speed (and one value when = 0). The wave speed is given by (2). The transmission 
factor per wavelength TF is defined as the factor by which the amplitude is multiplied 
to give the amplitude after transmission over a distance of one wavelength, A. 

TF=exp(-yy,A)=exp (-?). - 
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For the tube with no longitudinal motion 

- n2( 1 - c2) y2 = 
(1-Flo)c: . 

The solution for the dependent variables are of the form 

representing one wave of each type travelling in each direction. 

Womersley’s theory; these are 
The value of the displacement ratio and strain ratio can be determined from 

For a tube with the internal radius used in the present work f / [  is of the order of 
0.01 for waves I and O.OOO1 for waves 11. The strain ratio is a function of a only and 
is of order 2 for waves I and 0.1 for waves 11. In waves I the wall motion is principally 
radial and in waves I1 principally longitudinal. These waves are given a variety of 
names, Pedley (1980) calls them respectively the pressure wave and the shear wave. 
The pressure wave is similar to the one which is present in a tethered tube and in 
arterial systems and so might also be called the pulse wave ; Kuiken (1984) and others 
call i t  the Young wave. The shear wave is so called because in wave transmission in 
elastic solids this describes the motion, which for this wave type has zero dilatation 
(these are also called secondary waves, equivoluminal waves and waves of distortion). 
In the present application the wave is not simply in the solid but in the liquid-filled 
tube as a whole; in this case they are often called Lamb waves. In  Womersley’s 
original treatment waves I1 were ignored which was reasonable considering the 
physiological application of the work. We shall proceed by considering waves in 
tethered tubes in which waves of only one type are present. 

2.1. Inclusion of wall thickness effect 
Womersley’s theory is based on a membrane treatment of the wall. Taylor & Gerrard 
(1977) have shown that the wall thickness effect may be expressed as a multiplying 
factor, the thickness factor, B0, on the square of the inviscid wave speed so that ct 
becomes c: 8,. They show that observations of the deformation of a thick-walled tube 
are represented to within 5 % at deformations (relative change of tube radius) of 20 % 
and more accurately for smaller deformations (hence the suffix 0 on 8).  The expression 
for B0 is 

1 + h/2R 
‘O = (1 +h/R)2’  

where h and R are the wall thickness and internal radius at zero excess pressure. The 
same thickness factor is obtained by different means in the thick-wall treatment of 
Whirlow & Rouleau (1965). It will be seen in $3  that the measured propagation 
constant for a tethered tube is in agreement with the thin-wall theory corrected by 
the inclusion of this thickness factor. 
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FIQURE 2. Viscoelastic characteristics of latex tube. Complex Young’s modulus E = E,+iE,. 

2.2. The inclusion of wall viscoelasticity 
It is usual to represent the viscoelasticity of the wall by a Voigt model. The equation 
which describes oscillations in such a solid is that of an elastic substance with damping 
proportional to velocity. For a mass M oscillating on the end of a Voigt solid of length 
L and area of cross section A 

EA 
L 

MZ+ck+-z  = 0, 

where E is Young’s modulus. If the damping coefficient is zero but E is replaced by 
a complex value E,+iE, the equation becomes 

E A  E , A  
nL L 

MZ+‘k+-z = 0. 

Reference to Nolle (1950) shows that expressing the elastic modulus as a complex 
number is the usual practice in physiological applications. It is found that for artery 
walls the real and imaginary parts of Young’s modulus are effectively constant above 
2 Hz and below this frequency the imaginary part drops to zero at zero frequency 
(see Pedley 1980 p. 20). This implies that the material does not strictly conform to 
the Voigt model but since the viscoelasticity is small the approximations applied are 
adequate. 

In the present experiments latex rubber tubes were chosen because of their small 
viscoelasticity . The viscoelastic characteristics of latex were determined by 
measurement of the logarithmic decrement of oscillations of weights suspended on 
various lengths of the experimental tube over the frequency range 0.85-7.1 Hz. The 
frequency and decay of amplitude were measured by suspending the rubber tube with 
a weight on the end from a flecture to which strain gauges were attached. The 
logarithmic decrement divided by 7c ia the ratio EJE,, the values of which are shown 
in figure 2. The scatter of the results was partly due to the motion of the tube not 
being purely longitudinal. Klip, van Loon & Klip (1967) found that E,/E, was 
‘frequency dependent and close to 0.02 ’. The difference between Klip’s value and 
those of figure 2 will be shown not to have much effect in the application to a tethered 
tube but to be significant in the case of an unconstrained tube. The curve in figure 2 
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is drawn by eye in order to produce the dashed curve in figure 4(a) but it is also 
used in the calculations for the unconstrained tube. In view of this it is regrettable 
that the accuracy of EJE, could not be improved but this is thought not to affect 
significantly the conclusions drawn. 

3. Pulse propagation in a tethered tube 
The investigation of waves in a tethered elastic tube serves to show that the 

application of Womersley’s theory to this simple case agrees with experiment but 
more importantly that the effect of the viscoelasticity of the walls is properly 
included. We shall present some results of our own and also present the results of 
Klip (1962) and Klip et al. (1967) in a form different from that originally published 
but which shows more clearly the comparison with Womersley’s theory. These two 
publications appear to be the most reliable and well documented. They cover a wide 
range of frequency and different tube diameters and wall thicknesses. They also used 
latex tubes as we have done. When other materials such as red rubber are used the 
study turns into one of the viscoelastic effects because these are so large, as in the 
work of Taylor (1959-60). There have also been comparisons of in-vivo data with 
Womersley’s theory but this type of measurement is of little value for the testing 
of a physical theory which directly relates to a simple physical arrangement and not 
to the complicated natural phenomenon. The added difficulty of in-vivo measurements 
also reduces the accuracy of the comparison. These are of course important in the 
study of pulse propagation in mammalian arteries and do show the effect of 
viscoelasticity of the arterial walls; this is illustrated by the work of Milnor & Bertram 
(1978). 

3.1. Experimental method 
The apparatus used by Klip and Klip et al. was essentially the same as that used in 
the present work and will be briefly described after the current apparatus. A piston 
was driven in simple harmonic motion in a cylinder which connected to a metal tube 
of the same internal diameter as the latex tube. The latex tube was fastened over 
the end of this tube. The metal tube was fitted with a side branch with an attenuating 
constriction of small bore so that the oscillating flow propagated almost entirely down 
the latex tube. When measurements were made with a latex tube open at the far end 
a mean flow was supplied through the side branch. 

Measurements were made of the oscillating pressures at various distances from the 
piston by means of Gould Statham P23Gb pressure gauges equipped with hypodermic 
needles which were inserted through the tube wall. It is essential that all air bubbles 
are removed from the cavity of the transducer. The cavity was connected through 
a valve to a syringe filled with boiled water with which the cavity could be flushed 
out. The waveforms from each gauge were simultaneously recorded on a digital 
transient recorder (Nicolet Instrument Corp. 1070 series). The data was transferred 
to magnetic tape for subsequent Fourier analysis by computer. 

The latex tube was the only type available in the United Kingdom and was of 
6.2 mm internal diameter with a wall thickness of 1.8 mm. These tube dimensions 
were measured from segments taken from each end of the experimental section. The 
wall thickness varied in a random fashion by 10 % from sample to sample and over 
lengths of the tube of the order of a diameter. Calculations of the effect of this 
diameter variation showed that this caused the wave attenuation to increase by less 
than 5 %. 
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The open-tube measurements were made with 4-5 m of straight tube followed by 
a 180” bend in the latex tube and a further length of 30 m of tubing. A t  the frequencies 
investigated the amplitude of the wave reflected from the end back to the straight 
section of the tube was attenuated to 3 % of the primary wave. Reflections from the 
bend were negligible. 

The static Young’s modulus E was measured by hanging weights on the latex tube. 
The modulus was also determined from strips cut longitudinally and circumferentially 
from adjacent parts of the tube; the values of E differed by only about 1 yo thus 
demonstrating the isotropic nature of the latex. The values of the inviscid wave speed 
were determined from co z / O ,  = (Eh/pD)!, (3). These values differed by as much as 
8 %, from 14.36-15.50 m/s, over the period of the work and with different samples 
of latex. The higher value agrees with the E value used by Klip, the lower value 
appears to produce better agreement with experiments in $5. The variation of E is 
thought to be due to water absorption by the latex which certainly changes colour 
after extended use. The results in this section are presented non-dimensionally in such 
a way that they are independent of Young’s modulus. 

Measurements with a latex tube closed a t  the end remote from the piston were more 
accurate and could be performed with shorter lengths of tube. In this case there was 
no mean flow and the side tube was closed by a valve when the oscillating pressure 
measurements were made. Pressures were measured at six positions spaced along a 
tube of length 4.3 m. These included measurements at the closed end and a t  20 mm 
from the piston end of the tube. The pressures at  the latter position showed no signs 
of an entrance effect. 

The latex tube was effectively tethered by lying it on the bench in the case of small 
amplitudes of oscillation as used in these experiments. 

Klip’s method of measurement was essentially the same as that employed here with 
the open tube. The piston and cylinder arrangement was different but had the same 
effect. The straight section of the tube was 4 m in length followed by 56 m or more 
of tube coiled in a helix. In  all of the experiments the reflections from the end were 
small. The pressure amplitude at the end was always less than 5 yo of that a t  the piston. 
The range of frequency was 0.33-33 Hz. The viscosity of the glycerol-water mixtures 
used was 1, 10 and 100 CP (1 CP = lop3 Pa 9). The tube diameters/wall thicknesses 
ratioswere 12.36/0.84,7.46/1.77 and4.74/2.39 mm/mm. In this waya comprehensive 
range of parameters was covered. 

In Klip’s method and in some of our measurements the wave speed and attenuation 
were measured directly from the phase difference and amplitude ratio between two 
measuring stations a known distance apart in the straight section of the tube. A more 
accurate method which effectively averages several measurements is to determine by 
iteration the wave speed and attenuation which fits the measurements of phase and 
amplitude of the pressure at several points in a closed straight tube. The amplitude 
of the pressure in a tube extending from z = 0 at the piston to z = L a t  the closed 
end is given by 

Po cash ( Y ( L  - 4) 
= cosh(yL) ’ 

where p ,  is the pressure at z = 0 and y is the propagation constant, the real and 
imaginary parts of which are adjusted by trial and error until a fit with the 
observations is obtained. 
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a 

FIQURE 3. The ratio of tethered-tube wave speed to the inviscid wave speed (a = CO) aa a function 
of Stokes number, a. The values of EJE, in the range 0-0.04 make very little difference to the wave 
speed. 0,  Klip et al. (1962, 1967). Present results: 0, pairs of points in open tube; 0-0, closed 
tube by adjustment of y .  

3.2. Results 
The wave speed and transmission factor are shown in figures 3 and 4. The open circles 
joined by a curve are obtained from the present measurements in a closed tube. The 
other open circles are the present results obtained from single pairs of pressure 
measurements in a long open tube. The purpose here is to demonstrate that the values 
of the physical parameters of the latex are properly included and for this the results 
of Klip and Klip et al. are indispensible since they cover a wide range of all the 
parameters. The presentation of the Klip results has involved taking values from their 
graphs which has undoubtedly produced some scatter. The difference between this 
presentation and the original one is that the value of a is based on the mean radius 
of the tube which is calculated from the pressure-radius relation for a tethered tube 
given in table 1 and the thickness factor is included in the inviscid wave speed 
determined from the mean tube dimensions and the fluid kinematic viscosity. Though 
used in the calculation, the results presented are independent of this inviscid wave 
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FIGURE 4. Transmission factor in a tethered tube, exp ( - y , h ) ,  as a function of Stokes 
with EJE, as a parameter. ---, EJE, as in figure 2. Symbols as in figure 3. 
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FIGURE 4. Transmission factor in a tethered tube, exp ( - y , h ) ,  as a function of Stokes 
with EJE, as a parameter. ---, EJE, as in figure 2. Symbols as in figure 3. 

number 

speed. Klip’s results are shown by 0 symbols in figures 3 and 4. Also shown in the 
figures are the theoretical values for the ratios EJE,  = 0, 0.02 and 0.04. The wave 
speed is almost insensitive to changes in Ei/E, and so only one curve is drawn. The 
transmission factor is sensitive to the value of this ratio and it is clear that the value 
0.02 fits the data very well. The frequencies of the waves used in producing these 
figures from Klip’s results covered the range 0.33-26 Hz. Figure 4 also shows the 
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dashed curve which corresponds to the EJE,  values of the curve in figure 2. The effect 
of this variation is only notable in the range of u from 10-20 where the differences 
from the constant EJE, values is only small. Only one tube size was used in the 
present results and a variations reflect frequency changes. Klip’s measurements with 
three tube sizes and fluid viscosity values give results in which high- and low-frequency 
determinations occur in the same range of u. There is no systematic variation between 
the scatter of the points and the frequency. 

The results presented non-dimensionally in figures 3 and 4 are independent of the 
inviscid wave speed and hence of the elastic modulus of the tube material. This 
modulus is used to produce the non-dimensional values from Klip’s values of wave 
speed and the real part of the propagation constant. Klip’s values of these quantities 
show a difference between his calculated and measured values which appears and 
increases as frequency increases. The wave speed is proportional to the inviscid wave 
speed and the attenuation constant yr is inversely proportional. All the results in 
Klip’s thesis (1962) show that at the higher frequency of 33 Hz the wave speed is 
10 yo higher than the calculation and yr is some 15 % lower. Some substances such 
as mammalian arteries have a dynamic Young’s modulus up to twice the static value. 
It appears that for latex the elastic modulus is only increased by 10 yo at 33 Hz. In 
the measurements which will be presented for untethered tubes the highest frequency 
used was 4.5 Hz where we can expect the dynamic modulus to be only 1.4 % higher 
than the static value. 

The tethered tube results also show that any entrance and end effects are small 
(of the order of diameters rather than wavelengths). According to linear theory the 
oscillating velocity profile is the same in the rigid and in the tethered tube but there 
must be some entrance effect because the radial displacement is zero at the ends where 
the tube is clamped. 

We conclude that the measurements in a tethered tube are in agreement with 
Womersley ’s theory. The accuracy of the comparison is determined principally by 
that of the determination of the Young’s modulus of the tube material. The 
determination of the propagation constant of the waves in a tethered tube is a good 
method of determining the elastic modulus and its variation with frequency. 

4. An untethered section of an otherwise tethered tube 
In the course of the experiments on pulsatile flow in tethered latex tubes it was 

observed that small unsupported segments did not appear to possess any longitudinal 
motion even though the radial motion was apparent. At  Stokes number greater than 
5 Womersley’s theory of the pulse wave (wave I) predicts that the longitudinal strain 
is about one half of the circumferential strain. For a longitudinal motion of 6 the strain 
is a[/& and so the displacement 6 should be clearly visible. We now recognise that 
this is essentially the dilemma which in the 1960’s prompted the interest in the 
calculation of the longitudinal motion. 

Experiments were made to determine the relation of the longitudinal strain to the 
radial or circumferential strain. Measurements were made at  the centre of a 165 mm 
segment of unsupported water-filled latex tube; the remainder of the tube was 
tethered. The apparatus and arrangement were exactly as in the experiments on long 
tethered tubes open at the end and with a mean flow as described in the last section. 
Adjacent to the measurement segment the tube passed through grooves in 
polyurethane foam blocks which prevented longitudinal motion. Under no tension 
the water filled tube was stiff enough to remain almost straight. The pressure 
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amplitude was small enough not to cause the tube to execute lateral oscillations (such 
a snaking motion predominates at high amplitudes if the tube is curved and not 
tethered). The measurement section was about 1 m from the piston end of the long 
tube. Mercury strain gauges were attached to the tube surface longitudinally and 
circumferentially close to and on each side of the centre of the segment. The gauge 
lengths were equal to one outside circumference of the tube and were cemented at 
their ends to the tube surface. The gauges were calibrated statically and dynamically. 
The dynamic calibration agreed with the static one up to the maximum strain of 4 % 
for the range of frequencies covered in the measurements. The amplified signals from 
the strain gauges were recorded on the transient recorder and then Fourier analysed 
to determine their amplitudes and phases. Pressure at  the centre of the segment was 
also measured and analysed. 

The measurements confirmed the visual observation that the longitudinal strain 
eL was very small compared with the circumferential strain, ec. The results of 16 
measurements showed that 

eL/eC = (1.24 0.46) % 

for a range of a of 4-17 obtained by varying the frequency from 0.3-5.0 Hz. There 
was no systematic variation with frequency. 28 readings of pressure p and strain were 
taken. The strain eC lagged p by 2 + 0.3' and the phase difference between eL and p 
was 180+ 10'. In  Womersley's pulse wave the phase difference between ec and p has 
a maximum value of 4.7' a t  a = 4 and is less than 1" at a = 17. For reasons which 
will become apparent in the next section no attempt at a more refined comparison 
with theory will be made here. 

In these experiments the ratio of the length of the free segment to the wave- 
length of the pulse wave lay between 0.004 and 0.06. For almost the whole of the 
period of the oscillation, therefore, the segment is under tension of the same sign at  
all points of its length. Since the segment is stiff enough not to flex transversely it 
cannot change in length. We conclude that a tube which is tethered at points which 
are only a small fraction of a wavelength apart is effectively completely tethered. 

5. The deformable tube with minimum longitudinal constraint 
Having completed the preliminaries we are now in a position to embark upon the 

test of Womersley's theory. The conditions of zero constraint cannot be met in 
practice. The aim, therefore, is to use the minimum constraint to the longitudinal 
and radial motions of the tube. In view of the conclusions from the measurement of 
the motion of a free section of an otherwise tethered tube it follows that the tube 
needs to be several wavelengths long to approach freedom from end constraints and 
so that extensions in one half wavelength can be accommodated by contractions in 
the adjacent half wavelengths. This is complicated by the fact that the wavelengths 
of waves I and I1 are different. Almost all of the measurements have been made with 
a horizontal tube. If the tube is fixed at the ends at  the same horizontal level and 
left free to hang loosely in between, the motion resulting from pulsating flow is 
principally a vertical transverse oscillation with nodes and antinodes. The minimum 
constraint which keeps the tube straight and horizontal is achieved by suspending 
it by closely spaced flexible ties which allow horizontal motion. This will be described 
more fully in 55.2 where reference is made to figure 5.  The measurements have been 
made only of the amplitude of the longitudinal motion of the tube. 
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5.1. Application of Wornersley’s theory to a closed tube 
Womersley’s theory applies to an infinite tube or in practice to a tube section far from 
the constraints of the ends. The full solutions for longitudinal displacement and 
pressure which applies when there are reflections from both ends of the tube can be 
written, 

c(’) = ‘1 exp(-yIz)+C2 exp(yIz)+C3 exp(-yIIz)+C4 exp(yIIz), (20) 

p ( z )  = PI exp ( - yI z )  + P2 exp (?I 4 + P3 exp ( - yII 4 + P4 exp (yII 4, (21 1 
in which the pressure p = p ( z )  exp (int) and similarly for 5. When the available 
boundary conditions are applied to these two equations one obtains four equations 
from which to determine the eight unknown quantities Pi and C, but a general relation 
between the Pi and Ci can be used. To apply this theory to practical cases where the 
ends are not infinitely far away we assume, at least initially, that the infinite tube 
relations can be applied, that is, that p and 5 are related according to the Womersley 
theory as in (9) (table 1). This relation y p  = -pn2c3/(1 + q )  applies for the positively 
travelling wave. For negatively travelling waves y is replaced by -7. For the 
positively travelling waves [ ( z )  = C, exp ( - y, z )  and the pressure p ( z )  = P, exp ( - y5 z )  
and so 

2C P - p n  ‘, j = I  or 11, i = 1 4 ,  
y5 t - q  

and for the negatively travelling waves 

and we will write this 
= z,c, 

The boundary conditions are that 5 = 0 at each end, z = 0 and L. A t  these ends 
also the velocity is related to the pressure gradient. At the closed z = L end this 
velocity is zero. At z = 0 the deformable tube is attached to a rigid tube in which 
the fluid oscillations with a mean velocity equal to the piston speed, V,. In  the rigid 
tube 

The four equations, resulting from the application of the boundary conditions, which 
are to be solved for the C, values are thus: from 6 = 0 at  z = 0, 

c,+c2+c,+c4 = 0; (26) 

from 6 = 0 at z = L, 

‘1 exp ( -71 L, + ‘2 exp (?I L,  + c3 exp ( L, + c4 exp (711 L, = ; (27) 

from = 0 at z = L, 

and from applaz = - MV, at z = 0, 

c, 2, +c2 2, + c, 2, +c4 2, = MV,. (29) 



334 J .  H .  Cerrard 

These equations are easily solved to give the C, and thus, 

exp ( - 2% L )  exp (yI z )  
1 -exp (-27, L)  1 -exp (-27, L)  

- exp(-y,,z) + 

1 - exp ( - 2y,, L )  
(-2y11L) exp (yII z ) }  , (30) 

1 -exp ( - 275, L )  ~~ ~~ 

where M = M / ( Z , - Z Z , ) .  
It needs to be pointed out that to find 6 at a particular value of z(3  = Y(z) exp (int)) 

the waves at that point must be summed taking account of their phase; the complex 
5 values of the individual waves are added together. The resultant amplitude is the 
modulus of the added components. 

5.1 . l .  Extended entrance length 

We have seen that for a tethered tube agreement is obtained between measurements 
and the restricted theory which applies to this case. It was also found that end effects 
were minimal, being of the order of diameters of the tube. In the present case we shall 
see that the end effect has the wavelength as the characteristic length and so very 
long tubes are needed to check the simple theory. This is to be expected because the 
flow may be analysed in terms of a one-dimensional treatment in which the diameter 
of the tube only enters through the frequency parameter a. In this case the 
wavelength is the only length in the problem. An analytical treatment which 
reproduces the entrance length found in these experiments is obviously necessary but 
has not yet been formulated. This and the work of Kuiken (1984) will be discussed 
in 55.4. At the present stage of this work a simple exponential end effect factor will 
be applied to the results in order to show the form of the entrance length required. 
When the tube is not very long the entrance length will not have expired before the 
end of the tube is reached. In this case the entrance length may be extended to 
the waves reflected from the end. In order to do this an alternative derivation 
of the equation for [ ( z )  is useful. 

Consider waves of propagation constant y (which may be y, or y,,) radiating from 

(31) 
2 = 0, [ = 5, exp (int-yz). 

This wave is reflected, with change of phase to satisfy the 5 = 0 boundary condition, 
successively at  z = L and z = 0, to give as the sum of all the reflections 

5 = C0 exp (int){exp (-yz)-exp ( -y(2L-z))  

+ exp ( --y(2L + z ) )  -exp ( -y(4L -2)). . .}, (32) 

+ exp ( - 4yL) + . . .}, (33) 

, (34) 

When there is an entrance length S, we extend the entrance length into the 

= co exp (int) {exp ( - yz) - exp ( - y(2L - z ) ) }  { 1 +exp ( - 2yL) 

- - 50 exp (int) {exp ( -72) - exp ( - y(2L - 2 ) ) )  

1 -exp ( - 2 y L )  

which is the same a s  for each of the two waves in (30). 

reflections and the series above becomes, 

5 = go exp (int) { exp (-72) [ 1 -exp ( 3 ] - e x M 2 L - z ) )  - 
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This can be written as the original series of (32) minus the same series with y replaced 
by y+ 1/S so that, for example, C ,  becomes 

in (20) and similarly for the other C,. 
In  the results which will be presented in the next section all the theoretical results 

with the extended entrance effect included are represented by open triangles, A. In  
some cases it appears that an end effect at both ends is required. In  these cases a 
simple factor of 

is applied to the theoretical result of (30). The result is the same as with an extended 
entrance length, except near to z = L, when the tube is long. This simpler end-effect 
factor gives the results which are represented by open circles, 0. 

5.1.2. The constraint of the suspending strings 
When the tube is suspended on strings of length s, longitudinal motion is 

constrained by a restoring force due to the lifting of the tube as the strings swing 
in a pendulum motion. The square of the natural angular frequency of this motion 
is g/s, g being the acceleration of gravity. This constraint is allowed for after the 
manner of Womersley (1957) by replacing k, the non-dimensional mass per unit length 
of the tube in (6 )  by k(1 -g/sn2). 

5.2. Apparatus and method of measurement 
The isotropic latex tube has small and known viscoelastic properties, that is, its 
elastic modulus is known as is the small damping. The tubes used were of the same 
diameter and wall thickness as those used for the tethered tube experiments. The 
original ones were perforated by the insertion of hypodermic needles and though these 
could be sealed, more uniform new tubes were preferred. The longest length in which 
latex tube is available is a nominal 15 m. In some experiments two such tubes were 
glued end to end. The experimental arrangement is shown in figure 5.  In  most of the 
work the tube was suspended to lie in a horizontal straight line. The long lengths were 
accommodated by suspending the tube from the handrail of a gallery in the 
laboratory. The suspension loops were sewing cotton, 370 mm long and separated 
along the tube 100 mm apart. The tubes were stretched by &lo% in order to keep 
them straight. The small effect of this deformation was included in the calculation 
of the mean diameter which was determined from the static pressur+radius relation 
of Taylor & Gerrard (1977). One end of the tube was connected to the tube E which 
served as an entrance length to allow development of the oscillating-velocity profile 
(the same profile in a rigid as in a tethered deformable tube). The cylinder C and the 
piston P were of the same diameter as the inside of the tube. The piston amplitude 
and frequency were continuously variable. An infra-red detector, which was inter- 
rupted by a process on the piston driving rod, served to trigger a counter-timer which 
measured and displayed the period at frequenct intervals. The tube M which was 
closed by a tap just above the cylinder during the measurements of longitudinal 
motion was used to determine the mean internal pressure before the motion started. 
From this pressure the mean diameter was calculated. The end of the tube remote 
from the piston was closed and fixed rigidly. The tubes were filled with deionized water \ 

\ 
\ 
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FIGURE 5. Experimental arrangement: M = manometer, P & C piston & cylinder, 
E = rigid entrance tube. 

which was boiled to remove dissolved air. Care was taken to ensure that no bubbles 
remained in the tube. Measurements were made at a later stage to determine the effect 
of the bubbles. A bubble as large as two diameters in length located at either end 
of the tube was found to  have no effect on the results. 

The peak-to-peak longitudinal excursion of the tube wall was measured by viewing 
a line marked on the tube through a magnifying glass as i t  moved just below a 
transparent mm scale. The measurements of amplitude (half of the peak-to-peak 
excursion) were accurate and repeatable to  0.1 mm. Two sets of measurements were 
taken, either the amplitude at the centre of the tube was measured for a range of 
frequencies or the amplitude was determined as a function of distance along the tube 
for fixed values of the frequency. I n  one series of measurements tubes of length 4 and 
5 m were suspended vertically by using a cranked entrance tube E and the amplitude 
at the centre of the length was observed. As before the tube was slightly stretched 
but there were no attachments to the tube except a t  the ends. I n  this condition the 
tube becomes tapered under the action of the hydrostatic pressure difference. A 5 m 
length of tube has a taper of included angle less than 0.01" which will have a negligible 
effect. These measurements were made in order to  check that there were no 
unrecognized factors entering into the horizontal tube arrangement. The results, 
which are not presented here, showed that there were no such effects of any 
significance. 

The tube lengths employed ranged from 4 t o  34 m and the frequencies from 1 to 
5 Hz. The tube inside diameter and wall thickness under zero excess pressure were 
6.2 and 1.8 mm. 

5.3. Results 

Measured values of the amplitude of the longitudinal displacement in tubes of 
different lengths and over a range of frequencies will now be presented. Theoretical 
values are also shown on the same graphs. We start with cases which, sufficiently 
far from the ends, show agreement with the Womersley theory prediction. Figure 6 
shows this with the longest tube, of length 34 m, and for the highest frequency used. 
This tube is sufficiently long to behave like a semi-infinite tube over most of its length. 
The experimental results are shown by solid square symbols, (the points determined 
lie at the centres of the symbols in this and the following figures). The undulating 
appearance is due to interference between waves I and I1 radiating from the entrance ; 
reflection from the end has only a minor effect in this long tube. The amplitude of 
each of the waves I and I1 decays monotonically with distance down the tube owing 
to  viscous attenuation and wall viscoelasticity once beyond the entrance length. The 
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FIGURE 6. Axial motion amplitude [ in tube of length L aa a function of axial distance Z .  

L = 34.32 m;T  = 0.22 s ; 8  = 4.0A1;h,/L = 0.087;h1,/L = 0.202: .,experiments; .,infinite-tube 
theory with displacement and velocity boundary condition at each end; A, extended entrance 
length, 8 ;  0, end effects at both ends, length 8,. 

value of EJE, used to produce the theoretical values was taken from figure 2. At 
T = 0.22 s this value is 0.041. The value suggested by the work of Klip et al. (1967) 
is 0.02. If the latter value is used the theoretical values without any entrance length 
included have insufficient attenuation to come into agreement with the measurements 
in the second half of the tube, At the fourth and fifth maxima the present calculations 
have values of longitudinal amplitude of 1.85 and 1.28 mm; if E,/E, = 0.02 these 
values become 2.5 and 1.93 mm. 

The principal wavelength of the undulations is the mean of the wavelengths of the 
two waves. The inviscid wavespeed used in the theory was that corresponding to 
the lowest Young’s modulus measured and had the value c,, l/@, = 14.36 m/s. The 
wavelengths of the waves I and I1 were A, = 2.89 m and A,, = 6.93 m. The direct 
application of Womersley’s infinite-tube theory gives the values indicated on the 
figure. These points agree with the measured values beyond the entrance length with 
some unexplained discrepancy near to z = L. The entrance length will be quoted in 
terms of the wavelength A, which is proportional to the period T of the oscillations. 
Waves I1 have a longer wavelength which is proportional to Tat  small periods but 
at T > 0.5 s increases more rapidly with T. A,, also depends on the mass per unit 
length of the tube, k in (6). In the tube used in the present experiments A, = 1.35T, 
A,, = 2.3A1 at T < 0.5 s, A,, = 2.9A, at T = 0.9 s. As well as values directly calculated 
from Womersley’s infinite-tube theory the values obtained after an application of an 
entrance length are also shown. At  the highest frequencies very large entrance lengths 
of 4h1 are required in order to produce agreement with measured values. The value 
4 A, is critically dependent on the viscoelastic characteristic Ei/E,. This entrance 
length produces much too large a reduction in the first wavelength up to z = 0.15~5. 
There is no foundation for the assumption that in the entrance length the variation 
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FIQURE 7. Axial motion amplitude g in tube of length L aa a function of axial distance Z. 
L = 34.32 m; T = 0.29 a;  8 = 4.0h1; h l / L  = 0.114; hlI/L = 0.267. Symbols as in figure 6. 

should be of the simple exponential type. This correction is applied simply to show 
that an entrance effect of some sort is required. The mechanism of the entrance effect 
will be discussed later. The values of the entrance length are not accurately 
determined. The values quoted are the result of computation with trial values until 
reasonable fit with the experimental results was obtained. 

Figure 7 at a lower frequency is similar to figure 6 but shows better agreement at 
large z. The theoretical results at  large z possess small wavelength undulations not 
present in the measurements. As the wavelength-to-tube-length ratio h,/L increases 
in the following figures this appearance of undulations not present in the measured 
values becomes more pronounced. Figures 7 and 8 have the same value of h,/L and 
are very similar. In figure 9 in which the value of h I / L  is almost twice the value 
in the previous figures we notice a peak in the theoretical amplitude a t  z/L = 0.7 
where the measurements show a trough. It also seems as if an end effect is required to 
reduce the theoretical amplitude close to z = L. In figure 10 at h,/L = 0.28 the 
theory indicates four maxima whereas the experiments show only two. A similar 
situation is seen in figure 11 in which the inclusion of an end effect (at z = L) 
produces better agreement. 

Figures 12-15 show results for the 15 m tube which was the shortest for which 
measurements of g as a function of z were made. It is clear from these results that 
the application of entrance and end effects in an effort to make theory and experiment 
agree is becoming meaningless. In these results h,/L is of the order of unity and a 
full theory of the end effect is necessary. The effect of changing the propagation 
constant of the waves I1 is shown on these figures. This is accomplished by altering 
the value of k in (6). This change in the tube mass per unit length by a factor of 0.25 
has little effect on the wave I but the wave I1 value of yr is increased by 20% and 
yi decreased by 37 %. This is inclined to show that in the entrance length in tubes 
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FIQURE 8. Axial motion amplitude g in tube of length L as a function of axial distance z. 
L = 26.00 m; T = 0.22 s; S = 4.0A1; A,/L = 0.115; h I l / L  = 0.267. Symbols as in figure 6. 

Axial distance 

FIQURE 9. Axial motion amplitude [ in tube of length L as a function of axial distance z. 
L = 34.32 m; T = 0.45 s; 6 = 4 .54 ;  Al/L = 0.177; AII/L = 0.422. Symbols as in figure 6. 
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FIGURE 10. Axial motion amplitude g in tube of length L as a function of axial distance z. 
L = 26.00 m; T = 0.55 s; 6 = 4.5h1; h , /L  = 0.286; A,,/L = 0.696. Symbols as in figure 6. 

8 

2 

0 Axial distance 1 

FIGURE 11.  Axial motion amplitude g in tube of length L as a function of axial distance z. 
L =  26 .00m;T= 0 . 7 7 5 s ; S = 2 h 1 ; 6 ,  = 1 h , ; h , / L = 0 . 4 0 3 ; h I I / L =  1.0732.Symbolsasinfigure6. 
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FIGURE 12. Axial motion amplitude ( in tube of length L as a function of axial distance z. 
L = 15.00 m; T = 0.665 s; 6 = 0.625A,; = 0.625A1; A,/L = 0.599; A1JL = 1.516. Symbols as in 
figure 6. 
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FIGURE 13. Axial motion amplitude ( in tube of length L as a function of axial distance z. 
L = 15.00 m; T = 0.665 s; 6, = 0.625A1; AJL = 0.600; AIl/L = 2.07. Mass per unit length of the 
tube in the theory reduced to 0.25 times actual value, symbols as in figure 6. 
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FIQURE 14. Axial motion amplitude g in tube of length L as a function of axial distance z. 
L = 15.00 m; T = 0.80 s; 8, = 0.625h1; h,/L = 0.723; A,,/L = 1.958. 0, mass per unit length of 
the tube in the theory reduced to 0.25 times the actual value. Other symbols as in figure 6. 
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FIQURE 15. Axial motion amplitude g in tube of length L as a function of axial distance z. 
L = 15.00 m; T = 1.01 s ;  8 = 2.OA,; h, /L  = 0.916; h,,/L = 2.974. 0 as in figure 14, 8, = 0.625h1. 
Other symbols as in figure 6. 



Waves in jluid-$lied deformable tubes 

2 

343 

I .  P .* 
v -  I -  0 I 

1 .  

*: 

9 0 * &.@* ).a 

not long compared with the wavelength the departures from Womersley’s theory are 
so large that a single correction factor cannot be considered and that a different full 
theoretical treatment must be embarked upon; there is an indication that the 
propagation constant changes in the entrance length. 

The remaining results which will be presented show the variation of longitudinal 
motion amplitude at the centre of the tube, x = iL,  as a function of the period of 
oscillation. Figure 16 shows the experimental results at the centre of the 26 m tube. 
In the whole range of periods in figure 16 the length of the tube in wavelengths varies 
from about 12 to 1 A, and about 5 to less than 0.5A1,. The initial tension in the tube 
required to keep it straight was here varied between the limits employed in all the 
other experiments. This change is seen to produce no significant effect at most 
frequencies but there are large effects at a period just less than one second. This 
effect was not further investigated. It was noticed that at some frequencies some of 
the tubes executed sideways oscillation of maximum amplitude of 1 cm. This is to 
be expected when the tube length is close to an odd integral number of half 
wavelengths. In  this situation the tendency for the whole tube to change its length 
is at  a maximum. The longitudinal motion directly resulting from the sideways 
motion is negligibly small and so the effect of sideways motion was ignored. It appears 
that this needs further investigation. The initial extension of less than 10 % is only 
included in the theory through the change in internal radius which is used to calculate 
a. This effect is very small. A curve drawn through the experimental points of figure 
16 is reproduced with the theoretical values in figure 17. This figure clearly shows 
that Womersley’s theory for the infinite tube, plus boundary conditions, agrees well 
with the measurements when the measurement position is remote from the end in 
terms of wavelengths. As the wavelength of the oscillations increases with increasing 

0 ‘  
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FIQURE 17. Experimental results of figure 16 -, compared with theory: 0 ,  infinite-tube theory 
with displacement and velocity boundary conditions at each end; A, 8 = 2.5/\,; 0, 8 = 4.0A1. 
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FIGURE 18. Axial motion amplitude g at z = 4L as a function of the period, L = 5.03 m: 
0 ,  A, ., initial extensions = 1, 5 and 9 yo respectively. 
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period the end effect encompasses the measurement position and ever increasing 
departures from the theory are encountered. 

The effect of initial extension is shown in figure 18. Increased initial tension almost 
suppresses the peak at a period of 0.35 s. The theoretical results which are not shown 
also indicate three peaks at about the same values of the period. The maximum 
amplitudes calculated were 9, 14 and 18 mm in order of ascending period. Not 
surprisingly there is no agreement with measurement in this relatively short tube. 

5.4. Discussion 
To summarize the results of the experiments we may say that Womersley’s theory 
agrees with experiment far from the constraint of the ends of the tube. There is some 
indication that there may be an end effect at the closed end remote from the piston. 
A t  the piston end of the tube there is an entrance effect which considerably reduces 
the amplitude calculated from the infinite-tube theory. The entrance length is several 
wavelengths in extent. 

Womersley’s relationships indicate the changes which take place as the waves 
propagate down the tube. A t  the entrance the piston produces a sinusoidally 
oscillating flow and pressure. This fluid pressure causes the tube to expand in 
accordance with (8) of table 1 .  This equation is complex which implies a phase 
difference between radial displacement and pressure and hence in one cycle of 
oscillation the energy transferred to the wall is not all recovered. The difference in 
energy is radiated into the wave of the other type. This is quite apart from any loss 
of energy due to viscoelastic effects. In  the case of wave I which is the principal wave 
initially, the radial expansion has a concomitant longitudinal contraction (due to 
Poisson’s ratio and in this case the incompressibility of latex). The attendant 
longitudinal stress sets up waves I1 which propagate (more slowly than waves I) away 
from the position of deformation. Similarly, because (8) applies to both types of wave, 
waves I1 produce waves I also. These mechanisms of energy transfer occur in an 
infinite tube and away from the ends in our case they are automatically included in 
the theory. The application of the end conditions (g = 0) determines the amplitude 
relation between waves I and I1 but is applied at a position at which it appears that 
the infinite tube theory is not valid; the manner in which wave I produces wave I1 
is different near to the ends of the tube. In  order to solve the equations for the 
longitudinal displacement in a closed tube we assume the infinite-tube relation 
between pressure and this displacement. At the entrance the wave I starts as a wave 
in a tethered tube because the tube is fastened to the rigid extension of the piston 
cylinder; also the velocity profile in the rigid tube is the same as that in a tethered 
tube. The propagation constants are therefore expected to vary in the entrance 
length. 

The simple exponential factor applied to the calculations to produce agreement 
with the measurements in tubes long compared with the wavelength has been 
presented to show that some entrance length is necessary. Two facets of this are worth 
comment. The wavelengths of the undulations in figures 6-9 are in agreement with 
the infinite-tube theory with constant propagation speeds. It is only in tubes which 
are of the order of one wavelength long that there is evidence for the need for the 
propagation constant to vary. The second point to make is that the simple entrance 
factor presented in the figures relating to long tubes does not produce good agreement 
in the first wavelength at the piston end of the tube. It is not clear whether this is 
an effect of being close to the entrance or an effect of the proximity of a fixed end. 
The values of the entrance length in wavelengths used to produce agreement with 
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measurement seem not to vary strongly with the period of oscillation. The shorter 
tubes used at  the longer periods reflect the fact that the first cycle requires a lower 
entrance length in the longer tubes at smaller values of the period. 

The recent work of Kuiken (1984) has two main contributions. He corrects previous 
work which includes initial stresses in the tube and shows that these are of paramount 
importance in arteries. In  the present work the initial stresses are small; his 
non-dimensional prestresses, S longitudinally and T’ circumferentially , are in our 
case respectively less than 0.3 and 0.05. That the longitudinal tension produces a small 
effect has been seen in figures 16 and 18. More important for the present work is his 
treatment of the semi-infhite tube extending from z = 0-00 and which changes from 
being free to move only radially at z < 0 to being unconstrained both radially and 
longitudinally at z > 0. Solutions are no longer simply proportional to exp (int- yz). 
Kuiken’s results for both waves I and I1 show a variation of wavespeed and 
transmission factor with z at 01 values between 10 and 60. The range of z covered is 
from 0-40 tube radii. The results certainly show an effect of the sort which we are 
seeking but there is no indication of the propagation constant approaching the infinite 
tube value at large z. The experimental results are presented as data to challenge the 
ingenuity of the theoreticians. Our current work involves a medical application of 
the numerical analysis of pulsatile flow in distensible tubes. It is intended to test the 
numerical method on the results presented here. This exercise could produce ideas 
which might aid further analytical work. 

5.5. Conclusions 
Experiments have been made on one size of latex rubber tube nominally 6.2 mm 
internal diameter and 1.8 mm wall thickness in various lengths. With the aid of the 
results of Klip et al. on tethered latex tubes it was shown that the viscoelastic 
characteristics which we measured agree with their results. The viscoelasticity affects 
the attenuation of waves in the tubes and vitally affects the test of Womersley’s 
theory. It was found that this theory of wave motion in an unconstrained tube could 
only be directly tested very far from the ends of a tube driven by oscillating flow 
introduced at one end. To possess a region free from end constraints the tube needed 
to be several wavelengths long. The two propagation constants of Womersley’s waves 
which we have called waves I and I1 have both to be correctly predicted to produce 
the wave amplitudes measured. Simple measurements of the amplitude of the 
longitudinal motion of the wall have served to test the theory. 

It is found that Womersley’s theory does predict the measured amplitude a t  
distances beyond four wavelengths of wave I from the entrance to the tube. This 
implies that the simple boundary condition following from the tube being fixed in 
position and diameter at the ends adequately represents the end when it is viewed 
from a distance. Close to the end the infinite unconstrained tube the relationships 
of Womersley are insufficient to predict the amplitude which is measured to be less 
than half of the theoretical value. There is some evidence that there is an end effect 
at the closed end but the main effect observed is at  the entrance. In this region a 
new analytical treatment is awaited or the application of Kuiken’s (1984) analysis. 
It appears from the experimental results that at  least one propagation constant is 
not in fact constant in the entrance region. This is arguable on physical grounds from 
the manner in which the wave I1 is produced. 
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